skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yao, Yin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Secure aggregation, which is a core component of federated learning, aggregates locally trained models from distributed users at a central server, without revealing any other information about the local users' data. This paper follows a recent information theoretic secure aggregation problem with user dropouts, where the objective is to characterize the minimum communication cost from the K users to the server during the model aggregation. All existing secure aggregation protocols let the users share and store coded keys to guarantee security. On the motivation that uncoded groupwise keys are more convenient to be shared and could be used in large range of practical applications, this paper is the first to consider uncoded groupwise keys, where the keys are mutually independent and each key is shared by a group of S users. We show that if S is beyond a threshold, a new secure aggregation protocol with uncoded groupwise keys, referred to as GroupSecAgg, can achieve the same optimal communication cost as the best protocol with coded keys. The experiments on Amazon EC2 show the considerable improvements on the key sharing and model aggregation times compared to the state-of-the art. 
    more » « less